
Dynamic Factor Value-at-Risk for Large,

Heteroskedastic Portfolios∗

Sirio Aramonte

Federal Reserve Board

Marius del Giudice Rodriguez

Federal Reserve Board

Jason Wu†

Federal Reserve Board

March 6, 2011

Abstract

Trading portfolios at financial institutions are typically driven by a large
number of financial variables. These variables are often correlated with each
other and exhibit by time-varying volatilities. We propose a computationally
efficient Value-at-Risk (VaR) methodology based on Dynamic Factor Models
(DFM) that can be applied to portfolios with time-varying weights, and that,
unlike the popular Historical Simulation (HS) and Filtered Historical Simula-
tion (FHS) methodologies, can handle time-varying volatilities and correlations
for a large set of financial variables. We test the DFM-VaR on three stock
portfolios that cover the 2007-2009 financial crisis, and find that it reduces the
number and average size of back-testing breaches relative to HS-VaR and FHS-
VaR. DFM-VaR also outperforms HS-VaR when applied risk measurement of
individual stocks that are exposed to systematic risk.
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1 Introduction

As described in Berkowitz and O’Brien (2002) and Berkowitz and O’Brien (2006),

trading portfolios at large financial institutions exhibit two key characteristics: they

are driven by a large number of financial variables, such as stock returns, credit

spreads, or yield curves, and these variable have time-varying volatilities and correla-

tions. To accurately capture risks in such portfolios, it is important for risk managers

to select Value-at-Risk (VaR) methodologies that adequately handle these two char-

acteristics. This paper presents one such VaR methodology that is based on Dynamic

Factor Models (DFM, see for instance Stock and Watson (2002)).

When a trading portfolio is driven by a large number of financial variables, His-

torical Simulation (HS-VaR) is the standard industry practice for computing VaR

measures (see, among others, Perignon and Smith (2010) and Berkowitz, Christof-

fersen, and Pelletier (2009)). HS-VaR treats past realizations of the financial variables

as scenarios for future realizations. Although the HS-VaR is easy to compute, it is

not well-suited to capture the time-varying volatilities in financial variables (Pritsker

(2006)). Barone-Adesi, Giannopoulos, and Vosper (1999) and Hull and White (1998)

introduced Filtered Historical Simulation (FHS-VaR) as a way of handling time-

varying volatility in VaR estimation. In cases where the VaR depends on multi-

ple financial variables, Barone-Adesi, Giannopoulos, and Vosper (1999) and Pritsker

(2006) suggest filtering each variable independently. Univariate filtering imposes a

high computational burden, because filtering must be done one variable at a time.1

In addition, FHS-VaR does not explicitly capture time-varying correlations among

the financial variables, which may be important particularly during times of financial

1FHS-VaR can also be implemented through multivariate filtering, with, for instance, multivariate
GARCH models, but the estimation becomes difficult as the dimensionality of the problem increases
(Engle, Shephard, and Sheppard (2007)).
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stress.

We introduce DFM-VaR as a means of capturing the time-varying volatilities and

correlations of a large number of financial variables in a VaR estimation. Our main

assumption is that the large panel of variables are driven by a smaller set of latent

factors. By modeling financial variables through a DFM with time-varying volatilities

and correlations among the latent factors, the number of volatilities and correlations

to be estimated is greatly reduced, resulting in computational efficiency.

To evaluate whether the DFM-VaR accurately captures risks in financial markets,

we combine the DFM with the Dynamic Conditional Correlation (DCC) model of En-

gle (2002) to estimate VaRs for three stock portfolios: one equally-weighted portfolio

of large US stocks, one portfolio with time-varying weights based on momentum, and

one portfolio with time-varying weights based on the slope of option implied volatility

smile. Several DFM-VaRs with different specifications are compared to the HS-VaR

and the FHS-VaR based on univariate filtering. We find that the DFM-VaRs perform

better than HS-VaR and FHS-VaR in terms of back-testing breaches and average

breach-size in most cases. As expected, the DFM-VaRs were much more efficient to

estimate than the FHS-VaR.

We would like to emphasize that our innovation is to use DFM as a way to model

VaR in an environment where a large panel of financial variables exhibit time-varying

volatilities. The general idea of combining latent factors with GARCH was proposed

by Alexander (2001) and Alexander (2002), while theoretical properties of DFM-DCC

models were explored by Alessi, Barigozzi, and Capasso (2009). These studies provide

a platform for this paper to demonstrate how the DFM can be applied effectively in

portfolio risk management.

The remainder of the paper is organized as follows. Section 2 describes the general

framework for VaR estimation. Section 3 further describes the HS-VaR and FHS-VaR
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approaches to which we compare the DFM-VaR methodology. Section 4 details the

estimation of the DFM-VaR. Section 5 introduces the data and the three test port-

folios we use in the empirical analysis. Performances of the VaRs and the associated

statistical tests are documented in Section 6. In Section 7, we provide robustness tests

to show how the DFM-VaR measures risk for individual stocks which are sensitive

to systematic shocks. The last section contains concluding remarks and thoughts for

future research. Tables and figures can be found in the Appendix.

2 Economic Problem

Focusing on a one period holding horizon for a trading portfolio,2 the objective

is to calculate the T + 1 VaR of a portfolio of traded assets, conditional on the

information available at time T .3

Let P&LT+1 be the profit-and-loss of the portfolio at T+1, and IT the information

set up to time T . The definition of VaR at level α ∈ (0, 1) is:

V aRα
T+1 = sup{l ∈ R : P (P&LT+1 < l|IT ) ≤ 1− α} (2.1)

Assume that P&Lt can be calculated as:

P&Lt = g(Xt, θt) (2.2)

where Xt is a N × 1 vector of financial variables, where N is large, and θt is a vector

of possibly time-varying parameters, like portfolio weights or parameters from pricing

2The methodology can be easily generalized to a holding period of h.
3When implementing a VaR model, risk managers often only use information that goes back R

periods, from T −R+ 1 to T . For instance, the 1996 Market Risk Amendment to the Basel Accord
allows the use one year of past data (or R ≈ 250 business days).
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models. For example, the profit-and-loss at time t of the S&P 500 can be represented

as:

g(Xt, θt) = θ
′

tXt (2.3)

where Xt is a 500× 1 vector of returns of each S&P component, θt is a 500× 1 vector

with each element equal to 0.2%, and the initial investment was assume to be 1.

When using (2.2) to calculate T+1 VaR conditional on IT , we assume that θT+1 is

known at T .4 The goal is to estimate the conditional distribution of P&LT+1|IT and

choose its (1− α)th quantile as the VaR estimate, as in (2.1). Under the assumption

that θT+1 is known, the problem reduces to the estimation of the conditional distri-

bution XT+1|IT . For this purpose, the risk manager can obtain either parametric or

nonparametric estimates of the distribution of XT+1. He then either obtains a closed

form solution for the conditional distribution of P&LT+1, or makes draws to obtain

scenarios for that distribution. The latter case is usually referred to as the simulation

approach to VaR.

3 Historical and Filtered Historical Simulation

Deriving the distribution of XT+1 becomes difficult when its dimension is large.

In such cases, the standard practice is to use HS-VaR, where past realizations of Xt

are used to build the distribution of XT+1. The only choice the risk manager faces

is the length of the data window. For instance, it is popoular in the industry to

use realizations of Xt+1 in the past 250 trading days as the empirical distribution of

XT+1.

4θT+1 usually includes portfolio weights or pricing model parameters, which the risk manager
knows at T .
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Given that HS-VaR is not well suited to handling time-varying volatilities in Xt

(Pritsker (2006)), researchers have embraced FHS-VaR. FHS-VaR first “filters” each

variable in Xt using an appropriate volatility model (typically GARCH), then uses

the estimated volatility models to forecast the volatilities of the variables at T+1, and

finally assigns the volatility forecasts to scenarios of filtered variables (i.e., variables

divided by the estimated volatilities) to generate scenarios for XT+1.5

Implementation of FHS-VaR runs into two issues when N is large. First, because

each variable in Xt is modeled individually, FHS-VaR does not capture correlations

between time-varying volatilities - only unconditional correlations among the filtered

variables are captured (Pritsker (2006)). Second, estimating a separate time-varying

volatility model for each variable typically requires a significant computational effort.

An obvious alternative to univariate filtering is to construct FHS-VaR using multi-

variate time-varying volatility models, as in Engle and Kroner (1995) or Engle (2002).

These methods have the potential to capture correlations, but do not lighten the com-

putational burden, because the number of parameters to be estimated is typically in

proportion to N2. Recent papers such as Engle and Kelly (2009), Engle (2007) and

Engle, Shephard, and Sheppard (2007) have proposed solutions to modeling mul-

tivariate time-varying volatilities based on various dimension reduction techniques.

The DFM-VaR that we introduce also operates by reducing the dimensionality of the

problem. The appealing feature of the DFM framework is that it relates closely to

the factor model analysis of asset returns (e.g., Fama and French (1996)).

5See, for example, the work by Barone-Adesi, Giannopoulos, and Vosper (1999), and Pritsker
(2006)
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4 DFM-VaR Methodology

The applications and properties of DFMs have been documented by, among oth-

ers, Stock and Watson (2002), Bai and Ng (2007), Bai (2003), and Bai and Ng (2006).

Our proposal is to model Xt as a DFM with time-varying volatility. Various imple-

mentations of this type of model have been discussed by Alexander (2001), Alexander

(2002) and Alessi, Barigozzi, and Capasso (2009). The model we adopt for VaR esti-

mation follows closely to that of Alessi, Barigozzi, and Capasso (2009). In particular,

we use the DCC volatility model of Engle (2002). While possible alternative spec-

ifications include square root processes (Cox, Ingersoll, and Ross (1985)), or jumps

in addition to stochastic volatility, we focus on the set of GARCH models because

the theoretical properties of the DFM-GARCH has already been analyzed by Alessi,

Barigozzi, and Capasso (2009).

Let the financial variables Xt be a vector stationary process with mean zero. The

DFM model posits that Xt can be decomposed into a systematic component, driven

by a k × 1 vector of latent factors ft, and an idiosyncratic component εt. The key is

that k << N , so that the variation of a large number of variables can be explained

with a small set of systematic factors:

Xt = λ(L)ft + εt (4.1)

Φ(L)ft = hut (4.2)

where λ(L) is an N × k lag polynomial of order pX (the factor loadings), and Φ(L)

is a k × k lag polynomial of order pf . Notice that (4.2) states that the factors ft

have a pf order Vector Auto-Regressive (VAR) representation, with a k × 1 vector

of common shocks ut. Time-varying volatilities in Xt is modeled via time-varying
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volatilities in the common shocks process ut, such that

ut = Q
1/2
t zt (4.3)

Following Engle (2002) and Engle and Sheppard (2008), Qt is modeled with a DCC

specification:

Qt = DtWtDt

Dt = diagonal matrix with qit on the diagonals, for i = 1, ..., k

qit = ωi +

mi∑
j=1

αiju
2
i,t−j +

ni∑
j=1

βijqi,t−j

Wt = C∗−1
t CtC

∗−1
t (4.4)

Ct = (1−
m∑
j=1

αcj −
n∑
j=1

βcj )C̄ +
m∑
j=1

αcj(ũt−jũ
′

t−j) +
n∑
j=1

βcjCt−j

C∗ = diag(Ct)
1/2

ũt = D−1
t ut

and C̄ is the unconditional covariance of ũt. In this model, correlations between the

volatilities of the elements in Xt are captured by the dynamic factors.

In addition, to facilitate the computation of VaR, we impose that the error vector

(z
′
t, ε

′
t)
′ is IID across time. This assumption does not rule out contemporaneous cross-

sectional correlation between elements of the error vector.

If pX = pf ≡ p, we can re-write the above model in a State Space (SS) represen-
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tation with a single lag,6

Xt = ΛFt + εt (4.5)

Ft = AFt−1 +Hut (4.6)

where Ft = (f
′
t , ..., f

′
t−p)

′ is an r ≡ (p + 1) × k vector of static factors, Λ is a N × r

loadings matrix whose elements are a function of the loading coefficients in λ(L) and

of the coefficients in lag polynomial Φ(L), and H is a matrix of zeros except the first

k × k block, which is h.

Let IT be information up to and including time T . Then, to obtain the forecast

distribution of XT+1 conditional on IT , we can use the SS representation as follows:

XT+1 = ΛFT+1 + εT+1

FT+1 = AFT +HQ
1/2
T+1zT+1.

Note, to get a forecast distribution of XT+1, we need forecasts of the conditional

variance QT+1 given IT , and of the conditional distribution of (z
′
T+1, ε

′
T+1)′ given IT .

But since (z
′
t, ε

′
t)
′ are assumed to be IID across t, the conditional distribution is the

same as the unconditional distribution. In finite samples, one can use the observed

data {Xt}Tt=1 to estimate the factors F̂1, ..., F̂T , the various coefficient matrices, and

the shocks process {(z′
t, ε

′
t)

′}Tt=1. Assuming that k and p are known7, VaR estimation

based on DFM-DCC can be implemented with the following steps:

Step 1. Using the Principal Components (PC) methods of Stock and Watson (2002),

Bai (2003) and Bai and Ng (2006), obtain the following estimates for Λ, {Ft}Tt=1,

6This form is also known as the Static Form in the DFM literature.
7There is a literature that offers techniques on estimating k and p, see Bai and Ng (2007), for

instance.
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and {εt}Tt=1:

Λ̂ = r eigen-vectors of
1

T

T∑
t=1

XtX
′
t corresponding to the r largest eigenvalues

F̂t = Λ̂
′
Xt, for t = 1, ..., T

ε̂t+1 = Xt − Λ̂F̂t

Step 2. With the estimated static factors {F̂t}Tt=1, run the vector autoregression in

(4.6), obtain coefficient estimates Â, and VAR residuals Ĥut. Following Alessi,

Barigozzi, and Capasso (2009), estimate H using

Ĥ = first k eigen-vectors of
1

T

T∑
t=1

ĤutĤut
′

Then, estimate ut by ût = Ĥ
′
Ĥut.

Step 3. Use {ût}Tt=1 to estimate the DCC model in (4.5), obtain estimates of the DCC

parameters, {Q̂t}Tt=1 and {ẑt}Tt=1. Using these, build the k × k conditional

variance-covariance matrix forecast Q̂T+1.8

Step 4. Finally, build scenarios for XT+1 using X∗T+1 = Λ̂(ÂF̂T + ĤQ̂
1/2
T+1z

∗
T+1) + ε∗T+1,

where (z∗
′
T+1, ε

∗′
T+1)

′
are drawn from (ẑ

′
1, ε̂

′
1)′, ...., (ẑ

′
T , ε̂

′
T )′. One can then build

scenarios for P&LT+1 as P&L∗T+1 = g(X∗T+1, θT+1), and choose the appropriate

percentile as the VaR estimate V aRα
T+1.

Drawing an arbitrarily large number of times from the T scenarios will yield the same

results as using each of the T scenarios once. Therefore, there is no need to use each

of the T scenarios more than once. In other words, V aRα
T+1 will be the appropriate

quantile chosen out of the T ordered P&L∗T+1 scenarios.

8We use Kevin Sheppard’s codes for DCC estimation, available at www.kevinsheppard.com.
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Finally, using PCs to estimate DFMs will yield factors and loadings that are

identified up to a unitary transformation. However, the common component ΛF

and the idiosyncratic shocks ε are exactly identified. It follows from the results of

Alessi, Barigozzi, and Capasso (2009) that, if one imposes the additional restriction

that ||ût − ut|| = op(1), the scenarios of X∗T+1 form a distribution that consistently

estimates the true conditional distribution of XT+1|IT as T →∞.

5 Data and Portfolio Construction

We collect daily returns on the stocks in CRSP (share codes 10 and 11) that

commonly trade on the NYSE, AMEX, and NASDAQ. We use only stocks that have

non-missing returns on almost all trading days from 2007 to 2009. Our final data

set contains daily returns on 3,376 stocks across 750 trading days. All VaRs (DFM-

VaR, HS-VaR and FHS-VaR) are estimated using this data set, after returns of each

stock are winsorized at the 0.25% and 99.75% quantiles of the returns time series

distribution.

To get a flavor of the nature of the factors used to construct DFM-VaR extracted

from this panel of stock returns, Table 8.1 in the Appendix reports the correlations

between the first two principal components of 1
T

∑T
t=1 XtX

′
t, f1t and f2t, and a set

of asset pricing factors that includes the Fama-French and momentum factors, as

well as the changes on the CBOE’s VIX index and returns on the CBOE’s PUT

index. The VIX and the PUT indices are created to track volatility and downside

risk, respectively. The results show a -95.5% correlation between f1t and the market,

and a moderate correlation between f2t and both smb (35.4%) and hml (21.5%) (see

Figure 8.2 in the appendix).

[Insert Tables 8.1 - 8.2, and Figures 8.1 - 8.2 here]
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The high correlation between f1t and the market is to be expected, because much of

the common variation in the returns of a large set of stocks is by definition captured

by the returns on a broad equity index. The negative, rather than positive, sign is

potentially due to the fact that the common factors are identified up to a unitary

transformation. f1t is also highly correlated with several other factors, like dPut

and dVix, a fact driven by the well-established correlation of the market with the

same factors. The moderate but significant correlations of f2t with smb and hml

follows from the relevance of the two factors in explaining the cross-section of stock

returns (as in Fama and French (1996)). Table 8.2 reports the correlations at the

height of the 2008 financial crisis (9/2008-12/2008), and it suggests that f2t can also

capture downside and volatility risk: the correlation between f2t and dPut increased in

magnitude to -34.4% (from -14.8% over the whole sample). The correlation with dVix

also increased, from 16.3% to 35.6%. These correlation numbers are not surprising if

one inspects Figure 8.1, which shows that f2t generally has little variation, with the

exception of a cluster of large volatility and of several spikes in late 2008.

We form three test portfolios with the stock returns data: one that replicates a

broad market index, one based on the momentum effect, and one that includes stocks

more likely to experience large swings in prices, as proxied by the slope of the option

implied volatility smile.

The first portfolio (S&P 500 ) is the equally-weighted average return on the S&P

500 constituents as of the end of June 2008, with weights that remain constant

throughout the sample period. The second portfolio (Momentum) is the 6-6 over-

lapping momentum portfolio of Jegadeesh and Titman (1993). The portfolio is de-

signed to go long/short in the stocks with the highest/lowest returns over the past six

months, and is rebalanced every six months. The overlapping feature of the portfolio

means that weights typically change every month. The third portfolio (Money) is
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based on the slope of the implied volatility smile of equity options.9 We define the

Money portfolio as the equally-weighted average return of the stocks with the lowest

regression slope coefficients (bottom 30% of the distribution in t−1), where the slopes

are estimated in a manner similar to Bakshi, Kapadia, and Madan (2003) by regress-

ing the log-implied volatility on the log-moneyness (K
S

). We focus on daily regressions,

consider both in-the-money and out-of-the-money prices, and require a minimum of

three observations with maturity between 20 and 40 calendar days. While our ap-

proach is more prone to picking noise in the variation of implied volatility slopes, it

does provide portfolio weights that change at a higher frequency.10

Table 8.3 in the appendix presents summary statistics for the observed returns

of the three portfolios. We point out that the S&P 500 portfolio has the highest

mean return while the Money portfolio shows the highest volatility. We also note

that the Momentum portfolio has a large negative skew, consistent with a financial

crisis period.

[Insert Table 8.3 here]

6 VaR Estimations and Results

We compare the DFM-VaR, HS-VaR and FHS-VaR along three dimensions: the

number of VaR breaches, the average size of the breaches, and computational time.

The number of breaches is the primary indicator of VaR performance used in the

literature as well as in bank regulation.11 If the VaR model is good, we would expect

9The option pricing data is obtained from Optionmetrics, and we only consider options with a
non-zero trading volume, standard settlement, positive bid and ask prices, and for which the ask is
greater than the bid.

10On a few days we are unable to calculate smile slopes due to limited data availability, and we
use the weights of the immediately preceding days.

11The 1996 Market Risk Amendment of the Basel Accord imposes a regulatory capital multiplier
that depends on the number of VaR breaches experienced over the past year.
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that the 99% VaR, for instance, to be breached by realized portfolio 1% of the time.

Average breach size is an indicator of how severe the breaches are, and a decent VaR

model is expected to experience reasonablely-sized breaches. Finally, computation

time of each VaR measures how efficiently the VaRs can be calculated, which is a

very important practical consideration for large financial institutions.

In order to statistically assess the performance of the VaRs, numerous tests have

been proposed by the literature, such as the ones in Kupiec (1995), Christoffersen

and Pelletier (2004), Engle and Manganelli (2004) and Gaglianone, Lima, Linton,

and Smith (2011). The majority of these tests are based on statistical properties of

the frequency at which breaches occur. As we will describe in details, we perform

two tests that are popular in the literature for all VaRs that we calculate. While an

evaluation of performances of these tests are out of the scope of this paper, we remind

the reader to interpret the results of these tests with caution, particularly because

two of our three test portfolios changes over time.12

Formally, a “breach” variable can be defined as:

Bα
t =

 1 if P&Lt < V aRα
t

0 if P&Lt > V aRα
t

(6.1)

Therefore breaches form a sequence of zeros and ones. If the VaR model is correctly

specified, the conditional probability of a VaR breach would be

P (Bα
t = 1|It−1) = 1− α (6.2)

12For time-varying portfolios, both the realized returns of a portfolio and its VaRs are essentially
nonstationary. Techniques proposed in the literature to evaluate VaR for time-varying portfolios
include Berkowitz (2001) and Kerkhof and Melenberg (2004). These procedures, however, are more
suitable when the forecast distribution of returns are parametric, whereas the VaRs we are interested
in are all either semiparametric (DFM-VaR and FHS-VaR) or nonparametric (HS-VaR). Berkowitz
(2001) is appropriate when one is interested in testing the accuracy of the entire distribution, rather
than just the VaR.
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for every t. The first statistical test we use is a conditional coverage test, which is

based on the that if the VaR model is correctly specified, no information available to

the risk manager at the time the VaR is calculated should be helpful in forecasting

the probability that the VaR will be breached.13 Among the set of tests belonging to

this class is the one proposed in Engle and Manganelli (2004) and is usually referred

to as the CaViaR (Conditional Autoregressive Value-At-Risk) test. As presented in

Berkowitz, Christoffersen, and Pelletier (2009), the test is based on the following

regression

Bα
t = θ +

n∑
j=1

β1jB
α
t−j +

n∑
j=1

β2jg(Bα
t−j, B

α
t−j−1, ..., P&Lt−j, P&Lt−j−1, ...) + vt (6.3)

and we set g(Bα
t−k, B

α
t−j−1, ..., P&Lt−j, P&Lt−j−1, ...) = V aRα

t−j−1 and j = 1 as in

Berkowitz, Christoffersen, and Pelletier (2009).

As suggested by the same authors, we assume that the error term vt has a logistic

distribution and we estimate a logit model. We test the null that the β coefficients

are zero and P (Bα
t = 1) = 1 − α. Inference is based on a likelihood ratio test,

using Monte Carlo critical values of Dufour (2006) to alleviate nuisance parameter

and power concerns. Large p-values indicate that one cannot reject the null that the

breaches are independent and the number of unconditional breaches is at the desired

confidence level.

The CaViaR test relies heavily on the number of breaches. Since breaches are

considered rare events, this test may suffer from the lack of power. Building on

this reasoning, Gaglianone, Lima, Linton, and Smith (2011) propose a new approach

which does not rely solely on binary breach variables. This is the second test we

use. The idea behind the test is a quantile regression to test the null hypothesis

13Simple calculations show this continues to hold even when the portfolio is time-varying.
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that the VaR estimate is also the correct estimate of the quantile of the conditional

distribution of portfolio returns. This framework should be viewed as a Mincer and

Zarnowitz (1969)-type regression framework for a conditional quantile model, and, as

such, we refer to it as the Quantile test. The test is based on the comparison of a

Wald statistic to a Chi-squared distribution, and a large p-value indicates that one

cannot reject the null that the VaR is indeed the correct estimate of the conditional

quantile. The Quantile test makes use of more information since it does not solely

depend on binary variables, and therefore, as argued by Gaglianone, Lima, Linton,

and Smith (2011), has better power properties.

6.1 Results

We estimate one day ahead, out-of-sample HS-VaR, FHS-VaR, and three DFM-

VaRs for 500 trading days in 2008 - 2009, using a rolling historical window of 250

trading days. For DFM-VaR, we consider three cases: the first two cases set k = 2, 3,

but p = 0, while the third case sets k = 2 and p = 1. We note that the cases

where p = 0 are more in line with the established fact that stock returns, in general,

do not display auto-correlation in first moments at a daily frequency. In the DCC

component of DFM-VaR, we set m = n = 1 and mi = ni = 1 for all i = 1, ..., N . We

compute FHS-VaR by univariate filtering. We run a GARCH(1,1) on each of the N

stocks, forecast the conditional volatilities of each risk factor at T + 1, and construct

scenarios of XT+1 based on these volatility forecasts. For all models, we estimate

VaR at two different confidence levels, 99% and 95%.14 The VaRs are compared to

portfolio returns calculated from the raw, unwinsorized data. In our opinion, this

comparison is more interesting in that it acknowledges that the winsorization process

1499% VaRs are typically used by financial institutions for regulatory capital purposes, while 95%
VaRs are often used for internal risk management purposes.
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as part of the modeling technique, and should not necessarily receive credit in the

model performance assessment.

6.1.1 Descriptive Figures

We begin the discussion of results by commenting on the time series plots of

portfolio returns and VaR estimates in Figures 8.3 - 8.5. All DFM-VaRs in the

figures are based on the case k = 2, p = 0.15 The top panel in each figure displays the

returns alongside the 99% VaRs, while the bottom panel displays returns alongside

95% VaRs. Figure 8.3 displays the return series and VaR estimates for the S&P 500

portfolio. Figure 8.4 displays the return series and VaR estimates for the Momentum

portfolio. Figure 8.5 displays the return series and VaR estimates for the Money

portfolio.

[Insert Figures 8.3 - 8.5 here]

We first note that, as expected, across all model specifications and portfolios, the

VaR associated with a higher confidence level is greater in absolute value and more

volatile. We also observe that in general, the DFM-VaR is more responsive than the

HS-VaR, and it is large in absolute values during periods of high market volatility.

As argued in Pritsker (2006), HS-VaR is often very stale and outdated, even static.

As is evidenced in the figures, the estimates move to a different level only when a

significant negative shock occurs and remain there until the shock passes through the

sample time frame. A careful comparison of the graphs shows that the portfolio with

most composition variation (Money) produces a more dynamic HS-VaR, compared

to the S&P 500 and Momentum portfolios. Still, this level of variability is not

15The plots for the cases of k = 3, p = 0 and k = 2, p = 1 are similar, and are available upon
request.
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sufficient to prevent the HS-VaR from being overly conservative for certain periods,

and insufficiently conservative for others.

The FHS-VaR is more responsive than the HS-VaR, and it generally moves in the

same direction as the DFM-VaR. In fact, for the S&P 500 and Momentum portfolios,

FHS-VaR is quite similar to the DFM-VaR. However, for the Money portfolio, FHS-

VaR displays levels that lead to frequent breaches. We argue that since the FHS

ignores the correlation across risk factors it tends to underestimate risk for the Money

portfolio, which exhibits high levels of negative skewness and volatility.

6.1.2 VaR Evaluation Tests

In support of the descriptive figures, we now provide more formal evaluations of

all VaRs. To briefly summarize the results to follow, the DFM-VaRs perform well,

particularly when compared to HS-VaR, and they are also computationally efficient.

The FHS-VaR also has reasonable performance for two out of three portfolios, but it

is very computationally burdensome.

Table 8.4 displays the properties and results from statistical tests for all VaR

methodologies at the 99% confidence level. The three panels in the table correspond

to the three test portfolios. In Panel A, we observe that for the S&P 500 portfolio

the DFM-VaRs display very reasonable VaR breaches (1.4% for all three DFM-VaRs,

when 1% is expected), while the HS-VaR displays the most (2.8%). FHS-VaR also

performs well in terms of VaR breaches, but the size of the breaches are on average

substantially higher. (1.03%, compared to 0.66% - 0.75% for DFM-VaRs).

[Insert Table 8.4 here]

The last two rows in each of the panels display the p-values associated with the the

CaViaR and Quantile tests. For the S&P 500 portfolio, the CaViaR test suggests
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that the null that VaR breaches are independent across time and occurs 1% of the

time unconditionally cannot be rejected at a 10% significance level for DFM-VaR

with k = 2, p = 0 or k = 2, p = 1. The null also cannot be rejected for FHS-VaR.

Not surprisingly, the null is rejected for HS-VaR quite definitively. Turning to the

Quantile test, we cannot reject the null that the VaR is the correct estimate of the

conditional quantile, for all VaRs we consider.

Panel B presents the results for the Momentum portfolio. For this portfolio all

VaRs experience too many breaches. FHS-VaR appears to perform the best in terms

of breaches and average breach size, and two of the DFM-VaRs (k = 2, p = 0 and

k = 3, p = 0) experience similar performance as the FHS-VaR. The DFM-VaR when

k = 2, p = 1 performs quite poorly, indicating that the modeling of serial correlation

in the factors may not be appropriate for this portfolio. The CaViaR test suggests

that all the VaR models are incorrectly specified. With the exception of the FHS-

VaR, the Quantile test also suggests that all VaR estimates fail to capture the true

conditional quantile. One could interpret these results as a challenge most method-

ologies face when dealing with strategies whose associated returns feature excessive

negative skewness (see Table 8.3).

Recall that the Money portfolio exhibits the largest standard deviation compared

to the other two portfolios. In Panel C, we see that the FHS-VaR has the most

breaches and the HS-VaR has the large average breach sizes. It is somewhat surprising

that the FHS-VaR performs so poorly for this portfolio, given the Money portfolio’s

similarities to the S&P 500 portfolio. The CaViaR test suggests that only the DFM-

VaR when k = 3, p = 0 displays an acceptable performance at a 10% level, while it

rejects all other VaRs at 10%, with particularly strong evidence of rejection for the

FHS-VaR. Given its poor performance, it is not surprising that the FHS-VaR is the

only VaR being rejected by the Quantile test at the 10% level.
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Table 8.5 exhibits the performances of 95% VaRs. The table is structured in

the same way as Table 8.4. At this confidence level, the number of breaches is

higher for all VaRs as expected (ideally, a VaR should be breached 5% of the time),

while the average breach size is typically lower, due to the fact there are many more

smaller breaches compared to the 99% VaRs, which tend to be breached only by

quite extreme returns. The rankings of the different VaR models at the 95% level

are similar to those at the 99% level: the DFM-VaRs generally work well; the FHS-

VaR has similar performances as the DFM-VaRs except for the Money portfolio;

all VaRs perform relatively poorly for the Momentum portfolio; and the HS-VaR

unambiguously performs the worst for the S&P 500 and Money portfolios.

[Insert Table 8.5 here]

Finally, Table 8.6 compares the average time required by each VaR model to com-

pute one out-of-sample VaR.16 Not surprisingly, HS-VaR is the most computationally

efficient, because it requires virtually no modeling. Compared to the FHS-VaR, the

DFM-VaRs are highly efficient: while the FHS-VaR takes more than 17 minutes to

calculate each VaR, due to the univariate GARCH filtering applied to the 3,376 stocks,

the DFM-VaR has average computation time ranging from only 7 to 10 seconds per

VaR. From a practical perspective, DFM-VaRs are highly efficient.

[Insert Table 8.6 here]

7 DFM-VaR for Individual Stocks

To the extent that large swings in individual stock prices are generated by system-

atic shocks, it appears that the DFM-VaR will be able to capture such movements

16Note that the portfolio for which the VaRs are computed generally do not affect computational
time, because the portfolio weights for all three portfolios are matrices with the same dimension.
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through the extraction of systematic latent factors. Hence, we test whether the

DFM-VaR produces better VaR estimates for stocks that have a higher proportion of

systematic risk relative to total risk. Indeed, we find that the DFM-VaR generates

fewer breaches for stocks with less idiosyncratic risk, relative to HS-VaR.

For each stock, we measure total risk as the variance of daily excess returns, and

idiosyncratic risk as the variance of the residuals obtained by regressing daily excess

returns on the following four factors: market, smb, hml, and momentum.17 The

top panels of Figure 8.6 shows the number of breaches of the HS-VaR in excess of

the DFM-VaR (when k = 2 and p = 0), both for individual stocks (top-left panel)

and for portfolios of stocks with similar proportions of idiosyncratic risk (top-right

panel). The average cumulative difference in the number of breaches (over 2008-

2009) monotonically declines in statistically and economically significant terms with

the proportion of idiosyncratic risk. In fact, for stocks with little systematic risk,

there is little difference between the HS-VaR and DFM-VaR estimates.

[Insert Figure 8.6 here]

The bottom panels of Figure 8.6 study the size of the VaR breaches against the

proportion of idiosyncratic risk. The results provide less conclusive evidence than in

the case of the number of breaches. First, the average breach size initially increases

significantly with idiosyncratic noise, but then levels out and then decreases. Second,

the range of the difference in the average breach size is relatively small in economic

terms, remaining below 1%. Nonetheless, the evidence is sufficient for us to conclude

that the DFM-VaR produces smaller average breach sizes relative to HS-VaR for

stocks that are driven mostly by systematic shocks.

17The factor data were collected from the Fama-French section of the WRDS database.
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8 Conclusions

This paper introduces a VaR methodology suitable for trading portfolios that are

driven by a large number of financial variables with time-varying volatilities. The

use of Dynamic Factor Models (DFM) in VaR allows the risk manager to accurately

account for time-varying volatilities and correlations with relatively small computa-

tional burden. We test the method on three stock portfolios and show that DFM-VaR

compares favorably to VaRs based on Historical Simulation (HS-VaR) and Univariate

Filtered Historical Simulation (FHS-VaR) in terms of back-testing breaches and aver-

age breach sizes. In addition, DFM-VaRs are shown to be computationally efficient.

We construct three test portfolios to test the DFM-VaR: one that replicates a

broad market index, one based on the momentum effect with portfolio weights that

change every month, and one that includes stocks more likely to experience large

swings in prices, as proxied by the slope of the options implied volatility smile, with

portfolio weights that change every day. The three test portfolios differ in terms of

the features of their returns distributions. Our descriptive figures illustrate some of

the well-known deficiencies of the commonly-used HS-VaR approach, most notably

its inability to capture time-varying volatility. On the other hand, the DFM-VaR and

FHS-VaR perform reasonably well in general, but the DFM-VaR clearly out-performs

the FHS-VaR in one portfolio.

We use two statistical tests to evaluate the proposed DFM-VaR. These tests are

based on Engle and Manganelli (2004) and Gaglianone, Lima, Linton, and Smith

(2011). For the equally-weighted, time-invariant S&P 500 portfolio and the daily re-

balancing Money portfolios, the evaluation tests suggest that the proposed DFM-VaR

performs well. Because the Momentum portfolio is characterized by a high level of

negative skewness, none of the models was able to estimate the VaR very accurately.
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Still, the DFM-VaR provides reasonable estimates for that portfolio.

To the extent that large swings in individual stock prices are generated by sys-

tematic shocks, it is possible that the DFM-VaR will able to capture such movements

through the systematic latent factors extracted in the proposed procedure. Hence,

as a robustness check, we test whether the DFM-VaR produces better VaR estimates

for individual stocks that have a higher proportion of systematic risk relative to total

risk. As expected, we find that the DFM-VaR generates fewer breaches and smaller

average breach sizes for stocks with less idiosyncratic risk than HS-VaR.

In future work, we plan to investigate how DFM-VaR may be able model financial

variables with richer time series dynamics, like price jumps. Such an extension would

be useful when modeling portfolios of assets with non-linear payoffs, like options, or

assets of a different class than stocks, such as tranched credit derivatives or interest

rate swaptions.
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Table 8.1: Correlations of f1t and f2t with various asset
pricing factors

mkt smb hml umd dPut dVix f1t f2t

mkt 1
smb -0.07 1
hml 0.527 -0.02 1

umd -0.63 -0.03 -0.71 1
dPut 0.89 -0.18 0.41 -0.48 1
dVix -0.84 0.17 -0.36 0.44 -0.82 1
f1t -0.96 -0.18 -0.58 0.71 -0.81 0.77 1
f2t -0.09 0.35 0.22 -0.11 -0.15 0.16 0.00 1

Table shows correlations between selected asset pricing factors and the

DFM-VaR factors. Mkt, smb, hml and umd are the Fama-French and

momentum factors, while dPut is the arithmetic return on the PUT index

provided by the CBOE, and dVix is the change in the implied volatility

index VIX. f1t and f2t are the first two principal components extracted

from the stock returns data set.

Table 8.2: Correlations during the height of the 2008
financial crisis

mkt smb hml umd dPut dVix f1t f2t

mkt 1
smb -0.31 1
hml 0.50 -0.10 1
umd -0.74 0.12 -0.75 1
dPut 0.91 -0.37 0.41 -0.58 1
dVix -0.87 0.35 -0.34 0.57 -0.82 1
f1t -0.96 0.05 -0.56 0.80 -0.84 0.81 1
f2t -0.28 0.48 0.15 0.19 -0.34 0.36 0.19 1

Table shows correlations between selected asset pricing factors and the

DFM-VaR factors. Mkt, smb, hml and umd are the Fama-French and

momentum factors, while dPut is the arithmetic return on the PUT index

provided by the CBOE, and dVix is the change in the implied volatility

index VIX. f1t and f2t are the first two principal components extracted

from the stock returns data set. 9/2008-12/2008.
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Table 8.3: Summary statistics for portfolio
returns

S&P 500 Momentum Money

Mean 0.01% -0.34% -0.05%
Std. Dev. 2.51% 1.49% 3.38%
Skewness 1.68% -46.59% -13.07%
Kurtosis 617.15% 505.48% 486.64%

Table shows summary statistics for the three portfolios

described in section 5. Unwinsorized returns data on

3,376 individual stocks are used to calculate portfolio

summary statistics over 750 trading days in 2007 - 2009.

Table 8.4: 99% VaR comparisons across portfolios

Panel A: S&P 500 Portfolio

DFM-VaR DFM-VaR DFM-VaR HS-VaR FHS-VaR
k = 2, p = 1 k = 3, p = 0 k = 2, p = 1

Breach % 1.40% 1.40% 1.40% 2.80% 1.20%
Avg. breach size 0.75% 0.75% 0.66% 1.17% 1.03%
CaViaR p-value 10.09% 8.35% 20.48% 0.60% 85.56%

Quantile test p-value 51.73% 68.48% 88.83% 44.33% 95.14%

Panel B: Momentum Portfolio

DFM-VaR DFM-VaR DFM-VaR HS-VaR FHS-VaR
k = 2, p = 1 k = 3, p = 0 k = 2, p = 1

Breach % 2.60% 2.40% 7.80% 2.80% 2.40%
Avg. breach size 1.25% 1.35% 1.24% 1.33% 1.17%
CaViaR p-value 0.05% 0.05% 0.05% 0.05% 0.05%

Quantile test p-value 1.55% 8.17% 0.01% 4.71% 15.45%

Panel C: Money Portfolio

DFM-VaR DFM-VaR DFM-VaR HS-VaR FHS-VaR
k = 2, p = 1 k = 3, p = 0 k = 2, p = 1

Breach % 1.60% 1.40% 1.60% 2.00% 8.60%
Avg. breach size 0.91% 1.00% 0.85% 1.76% 1.69%
CaViaR p-value 5.70% 11.29% 7.55% 2.00% 0.05%

Quantile test p-value 42.91% 46.65% 65.96% 27.01% 9.72%

Table shows statistics on competing VaR models, across the three test portfolios. All VaRs are estimated

using a 250 days rolling historical window, using methods described sections 4 and 6.1. “Breach %”

is the percentage of days (out of 500 trading days in 2008-2009) for which realized portfolio returns

breached the 99% VaR. “Avg. breach size” is the average of the sizes of the breaches over the 500

days. “CaViaR p-value” is the Monte Carlo based p-value (using 2000 replications) of the CaViaR test

statistics described in section 6. “Quantile p-value” is the p-value of the Quantile test statistics with

respect to a Chi-squared distribution with two degrees of freedom, as described in section 6.
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Table 8.5: 95% VaR comparisons across portfolios

Panel A: S&P 500 Portfolio

DFM-VaR DFM-VaR DFM-VaR HS-VaR FHS-VaR
k = 2, p = 1 k = 3, p = 0 k = 2, p = 1

Breach % 4.80% 5.60% 5.00% 6.60% 4.20%
Avg. breach size 0.91% 0.82% 0.98% 1.77% 0.97%
CaViaR p-value 53.97% 29.69% 47.93% 0.15% 49.88%

Quantile test p-value 68.51% 97.99% 56.61% 0.82% 20.55%

Panel B: Momentum Portfolio

DFM-VaR DFM-VaR DFM-VaR HS-VaR FHS-VaR
k = 2, p = 1 k = 3, p = 0 k = 2, p = 1

Breach % 16.00% 14.20% 21.80% 15.80% 14.80%
Avg. breach size 0.85% 0.85% 1.10% 0.98% 0.80%
CaViaR p-value 0.05% 0.05% 0.05% 0.05% 0.05%

Quantile test p-value 0.57% 0.20% 0.00% 0.00% 0.01%

Panel C: Money Portfolio

DFM-VaR DFM-VaR DFM-VaR HS-VaR FHS-VaR
k = 2, p = 1 k = 3, p = 0 k = 2, p = 1

Breach % 5.80% 5.80% 6.00% 7.20% 15.60%
Avg. breach size 1.13% 1.15% 1.27% 2.12% 1.96%
CaViaR p-value 24.69% 27.89% 64.67% 0.10% 0.10%

Quantile test p-value 46.41% 62.12% 48.68% 0.68% 0.00%

Table shows statistics on competing VaR models, across the three test portfolios. All VaRs are estimated

using a 250 days rolling historical window, using methods described sections 4 and 6.1. “Breach %”

is the percentage of days (out of 500 trading days in 2008-2009) for which realized portfolio returns

breached the 95% VaR. “Avg. breach size” is the average of the sizes of the breaches over the 500

days. “CaViaR p-value” is the Monte Carlo based p-value (using 2000 replications) of the CaViaR test

statistics described in section 6. “Quantile p-value” is the p-value of the Quantile test statistics with

respect to a Chi-squared distribution with two degrees of freedom, as described in section 6.

Table 8.6: Average computation time for VaRs

DFM-VaR DFM-VaR DFM-VaR HS-VaR FHS-VaR
k = 2, p = 0 k = 3, p = 0 k = 2, p = 1

Comp. Time 7.1 secs 8.2 secs 9.8 secs 0.5 secs 17.6 mins

Table shows computation time required by different VaR models. “Comp. Time” is the average

computation time it takes to calculate one VaR, across the 500 out-of-sample VaRs calculated.

The same Matlab server is used to compute all VaRs, and all VaRs are computation began at

the same time.
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Figure 8.1: Plot of f1t and f2t

The graphs display the time series of the first two principal components extracted from the stock returns data set

(f1t on the left, f2t on the right). 2007-2009.

Figure 8.2: Plot of f1t, f2t and the ‘mkt’ and ‘smb’ factors

The left panel shows the market factor against f1t, while the right panel shows smb against f2t. 2007-2009.
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Figure 8.3: Returns and VaRs for the S&P 500 portfolio. 99% VaRs in top graph;
95% VaRs in bottom graph.
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Figure 8.4: Returns and VaRs for the Momentum portfolio. 99% VaRs in top graph;
95% VaRs in bottom graph.
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Figure 8.5: Returns and VaRs for the Money portfolio. 99% VaRs in top graph; 95%
VaRs in bottom graph.
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Figure 8.6: Idiosyncratic risk and the number and size of exceptions

Idiosyncratic risk is the variance of the residuals from stock-specific regressions of daily excess returns on the Market,

Smb, Hml and Umd factors. Total risk is the variance of excess returns. The ratio of idiosyncratic risk to total

risk is the former divided by the latter. The ten buckets of idiosyncratic risk have a thickness of 0.1, from 0 to 1.

Stocks with the highest idiosyncratic risk belong to bucket 10. The regressions are based on daily excess returns, and

cover the 2008-2009 period. The left panels plots the “Excess breaches”(top) and “Excess breach size” (bottom) for

individual stocks, on the amount of idiosyncratic risk. Excess number (size) is defined as the number (average size)

of HS-VaR breaches minus the number (average size) of DFM-VaR breaches. The right panels reports the average,

across stocks within a given bucket, of the excess number and size of breaches shown in the left panels. The 95%

confidence intervals are calculated from the percentiles of the distribution of the averages within each bucket, whereas

the distribution is based on 1,000 bootstrap replications. Note that the left and right panels have different scales.
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